Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(17): 9356-9364, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32303658

RESUMO

Inositol diphosphates (PP-IPs), also known as inositol pyrophosphates, are high-energy cellular signaling codes involved in nutrient and regulatory responses. We report that the evolutionarily conserved gene product, Vip1, possesses autonomous kinase and pyrophosphatase domains capable of synthesis and destruction of D-1 PP-IPs. Our studies provide atomic-resolution structures of the PP-IP products and unequivocally define that the Vip1 gene product is a highly selective 1-kinase and 1-pyrophosphatase enzyme whose activities arise through distinct active sites. Kinetic analyses of kinase and pyrophosphatase parameters are consistent with Vip1 evolving to modulate levels of 1-IP7 and 1,5-IP8 Individual perturbations in kinase and pyrophosphatase activities in cells result in differential effects on vacuolar morphology and osmotic responses. Analogous to the dual-functional key energy metabolism regulator, phosphofructokinase 2, Vip1 is a kinase and pyrophosphatase switch whose 1-PP-IP products play an important role in a cellular adaptation.


Assuntos
Fosfatos de Inositol/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Difosfatos/metabolismo , Fosfatos de Inositol/fisiologia , Cinética , Fosforilação , Fosfotransferases (Aceptor do Grupo Fosfato)/fisiologia , Pirofosfatases/metabolismo , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais
2.
J Biol Chem ; 288(13): 9216-25, 2013 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-23413030

RESUMO

Lipopolysaccharide (LPS; endotoxin) is an essential component of the outer monolayer of nearly all Gram-negative bacteria. LPS is composed of a hydrophobic anchor, known as lipid A, an inner core oligosaccharide, and a repeating O-antigen polysaccharide. In nearly all species, the first sugar bridging the hydrophobic lipid A and the polysaccharide domain is 3-deoxy-d-manno-octulosonic acid (Kdo), and thus it is critically important for LPS biosynthesis. Modifications to lipid A have been shown to be important for resistance to antimicrobial peptides as well as modulating recognition by the mammalian innate immune system. Therefore, lipid A derivatives have been used for development of vaccine strains and vaccine adjuvants. One derivative that has yet to be studied is 8-amino-3,8-dideoxy-d-manno-octulosonic acid (Kdo8N), which is found exclusively in marine bacteria of the genus Shewanella. Using bioinformatics, a candidate gene cluster for Kdo8N biosynthesis was identified in Shewanella oneidensis. Expression of these genes recombinantly in Escherichia coli resulted in lipid A containing Kdo8N, and in vitro assays confirmed their proposed enzymatic function. Both the in vivo and in vitro data were consistent with direct conversion of Kdo to Kdo8N prior to its incorporation into the Kdo8N-lipid A domain of LPS by a metal-dependent oxidase followed by a glutamate-dependent aminotransferase. To our knowledge, this oxidase is the first enzyme shown to oxidize an alcohol using a metal and molecular oxygen, not NAD(P)(+). Creation of an S. oneidensis in-frame deletion strain showed increased sensitivity to the cationic antimicrobial peptide polymyxin as well as bile salts, suggesting a role in outer membrane integrity.


Assuntos
Lipopolissacarídeos/química , Shewanella/metabolismo , Açúcares Ácidos/química , Oxirredutases do Álcool/metabolismo , Proteínas de Bactérias/metabolismo , Cromatografia em Camada Fina/métodos , Clonagem Molecular , Regulação Bacteriana da Expressão Gênica , Genômica , Ácido Glutâmico/química , Lipídeo A/metabolismo , Lipídeos/química , Espectrometria de Massas/métodos , Modelos Químicos , Oxigênio/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Açúcares Ácidos/metabolismo
3.
Biochemistry ; 50(2): 258-65, 2011 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-21171638

RESUMO

The first committed step of lipid A biosynthesis is catalyzed by UDP-(3-O-((R)-3-hydroxymyristoyl))-N-acetylglucosamine deacetylase, a metal-dependent deacetylase also known as LpxC. Because lipid A is essential for bacterial viability, the inhibition of LpxC is an appealing therapeutic strategy for the treatment of Gram-negative bacterial infections. Here we report the 1.79 Å resolution X-ray crystal structure of LpxC from Yersinia enterocolitica (YeLpxC) complexed with the potent hydroxamate inhibitor CHIR-090. This enzyme is a nearly identical orthologue of LpxC from Yersinia pestis (99.7% sequence identity), the pathogen that causes bubonic plague. Similar to the inhibition of LpxC from Escherichia coli, CHIR-090 inhibits YeLpxC via a two-step slow, tight-binding mechanism with an apparent K(i) of 0.54 ± 0.14 nM followed by conversion of the E·I to E·I* species with a rate constant of 0.11 ± 0.01 min(-1). The structure of the LpxC complex with CHIR-090 shows that the inhibitor hydroxamate group chelates the active site zinc ion, and the "tail" of the inhibitor binds in the hydrophobic tunnel in the active site. This hydrophobic tunnel is framed by a ßαß subdomain that exhibits significant conformational flexibility as it accommodates inhibitor binding. CHIR-090 displays a 27 mm zone of inhibition against Y. enterocolitica in a Kirby-Bauer antibiotic assay, which is comparable to its reported activity against other Gram-negative species including E. coli and Pseudomonas aeruginosa. This study demonstrates that the inhibition of LpxC should be explored as a potential therapeutic and/or prophylatic response to infection by weaponized Yersinia species.


Assuntos
Amidoidrolases/antagonistas & inibidores , Amidoidrolases/química , Antibacterianos/farmacologia , Inibidores Enzimáticos/farmacologia , Ácidos Hidroxâmicos/farmacologia , Treonina/análogos & derivados , Yersinia enterocolitica/enzimologia , Amidoidrolases/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Alinhamento de Sequência , Treonina/farmacologia , Yersiniose/tratamento farmacológico , Yersiniose/microbiologia , Yersinia enterocolitica/química , Yersinia enterocolitica/efeitos dos fármacos
4.
J Biol Chem ; 285(44): 33788-96, 2010 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-20709752

RESUMO

UDP-3-O-((R)-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) catalyzes the deacetylation of UDP-3-O-((R)-3-hydroxymyristoyl)-N-acetylglucosamine to form UDP-3-O-myristoylglucosamine and acetate in Gram-negative bacteria. This second, and committed, step in lipid A biosynthesis is a target for antibiotic development. LpxC was previously identified as a mononuclear Zn(II) metalloenzyme; however, LpxC is 6-8-fold more active with the oxygen-sensitive Fe(II) cofactor (Hernick, M., Gattis, S. G., Penner-Hahn, J. E., and Fierke, C. A. (2010) Biochemistry 49, 2246-2255). To analyze the native metal cofactor bound to LpxC, we developed a pulldown method to rapidly purify tagged LpxC under anaerobic conditions. The metal bound to LpxC purified from Escherichia coli grown in minimal medium is mainly Fe(II). However, the ratio of iron/zinc bound to LpxC varies with the metal content of the medium. Furthermore, the iron/zinc ratio bound to native LpxC, determined by activity assays, has a similar dependence on the growth conditions. LpxC has significantly higher affinity for Zn(II) compared with Fe(II) with K(D) values of 60 ± 20 pM and 110 ± 40 nM, respectively. However, in vivo concentrations of readily exchangeable iron are significantly higher than zinc, suggesting that Fe(II) is the thermodynamically favored metal cofactor for LpxC under cellular conditions. These data indicate that LpxC expressed in E. coli grown in standard medium predominantly exists as the Fe(II)-enzyme. However, the metal cofactor in LpxC can switch between iron and zinc in response to perturbations in available metal ions. This alteration may be important for regulating the LpxC activity upon changes in environmental conditions and may be a general mechanism of regulating the activity of metalloenzymes.


Assuntos
Amidoidrolases/química , Ferro/química , Zinco/química , Domínio Catalítico , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Imunoglobulina G/química , Cinética , Metaloproteínas/química , Metais/química , Modelos Químicos , Modelos Estatísticos , Plasmídeos/metabolismo , Ligação Proteica , Termodinâmica
5.
Biochemistry ; 49(24): 5048-56, 2010 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-20545365

RESUMO

The metal-dependent histone deacetylases (HDACs) adopt an alpha/beta protein fold first identified in rat liver arginase. Despite insignificant overall amino acid sequence identity, these enzymes share a strictly conserved metal binding site with divergent metal specificity and stoichiometry. HDAC8, originally thought to be a Zn(2+)-metallohydrolase, exhibits increased activity with Co(2+) and Fe(2+) cofactors based on k(cat)/K(M) (Gantt, S. L., Gattis, S. G., and Fierke, C. A. (2006) Biochemistry 45, 6170-6178). Here, we report the first X-ray crystal structures of metallo-substituted HDAC8, Co(2+)-HDAC8, D101L Co(2+)-HDAC8, D101L Mn(2+)-HDAC8, and D101L Fe(2+)-HDAC8, each complexed with the inhibitor M344. Metal content of protein samples in solution is confirmed by inductively coupled plasma mass spectrometry. For the crystalline enzymes, peaks in Bijvoet difference Fourier maps calculated from X-ray diffraction data collected near the respective elemental absorption edges confirm metal substitution. Additional solution studies confirm incorporation of Cu(2+); Fe(3+) and Ni(2+) do not bind under conditions tested. The metal dependence of the substrate K(M) values and the K(i) values of hydroxamate inhibitors that chelate the active site metal are consistent with substrate-metal coordination in the precatalytic Michaelis complex that enhances catalysis. Additionally, although HDAC8 binds Zn(2+) nearly 10(6)-fold more tightly than Fe(2+), the affinities for both metal ions are comparable to the readily exchangeable metal concentrations estimated in living cells, suggesting that HDAC8 could bind either or both Fe(2+) or Zn(2+) in vivo.


Assuntos
Cobalto/química , Histona Desacetilases/química , Ferro/química , Manganês/química , Proteínas Repressoras/química , Catálise , Domínio Catalítico , Cátions Bivalentes , Cristalografia por Raios X , Análise de Fourier , Humanos , Ácidos Hidroxâmicos/química , Modelos Moleculares , Conformação Proteica , Proteínas Repressoras/antagonistas & inibidores , Vorinostat
6.
Biochemistry ; 49(10): 2246-55, 2010 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-20136146

RESUMO

The metal-dependent deacetylase UDP-3-O-[(R)-3-hydroxymyristoyl]-N-acetylglucosamine deacetylase (LpxC) catalyzes the first committed step in lipid A biosynthesis, the hydrolysis of UDP-3-O-myristoyl-N-acetylglucosamine to form UDP-3-O-myristoylglucosamine and acetate. Consequently, LpxC is a target for the development of antibiotics, nearly all of which coordinate the active site metal ion. Here we examine the ability of Fe(2+) to serve as a cofactor for wild-type Escherichia coli LpxC and a mutant enzyme (EcC63A), in which one of the ligands for the inhibitory metal binding site has been removed. LpxC exhibits higher activity (6-8-fold) with a single bound Fe(2+) as the cofactor compared to Zn(2+)-LpxC; both metalloenzymes have a bell-shaped dependence on pH with similar pK(a) values, indicating that at least two ionizations are important for maximal activity. X-ray absorption spectroscopy experiments suggest that the catalytic metal ion bound to Fe(2+)-EcLpxC is five-coordinate, suggesting that catalytic activity may correlate with coordination number. Furthermore, the ligand affinity of Fe(2+)-LpxC compared to the Zn(2+) enzyme is altered by up to 6-fold. In contrast to Zn(2+)-LpxC, the activity of Fe(2+)-LpxC is redox-sensitive, and a time-dependent decrease in activity is observed under aerobic conditions. The LpxC activity of crude E. coli cell lysates is also aerobically sensitive, consistent with the presence of Fe(2+)-LpxC. These data indicate that EcLpxC can use either Fe(2+) or Zn(2+) to activate catalysis in vitro and possibly in vivo, which may allow LpxC to function in E. coli grown under different environmental conditions.


Assuntos
Amidoidrolases/metabolismo , Escherichia coli/enzimologia , Ferro/farmacologia , Amidoidrolases/antagonistas & inibidores , Amidoidrolases/química , Amidoidrolases/genética , Animais , Biocatálise , Domínio Catalítico , Coenzimas/metabolismo , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Ligantes , Modelos Moleculares , Mutação , Oxigênio/metabolismo , Ligação Proteica , Espectroscopia por Absorção de Raios X , Zinco/metabolismo
7.
J Biol Chem ; 284(16): 10324-33, 2009 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-19139092

RESUMO

Dihydrouridine synthases (DUSs) are flavin-dependent enzymes that catalyze site-specific reduction of uracils in tRNAs. The mechanism of DUS 2 from Saccharomyces cerevisiae was studied. Previously published turnover rates for this DUS were very low. Our studies show that the catalytic cycle consists of reductive and oxidative half-reactions. The enzyme is reduced by NADPH rapidly but has a very slow oxidative half-reaction using in vitro transcribed tRNA substrates. Using tRNA(Leu) purified from a DUS 2 knockout strain of yeast we obtained reaction rate enhancements of 600-fold over in vitro transcribed substrates, indicating that other RNA modifications are required for rapid uracil reduction. This demonstrates a previously unknown ordering of modifications and indicates that dihydrouridine formation is a later step in tRNA maturation. We also show that an active site cysteine is important for catalysis, likely in the protonation of uracil during tRNA reduction. Dihydrouridine of modified tRNA from Escherichia coli was also oxidized to uridine showing the reaction to be reversible.


Assuntos
Oxirredutases/metabolismo , RNA de Transferência de Leucina , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae , Domínio Catalítico , Estrutura Molecular , NADP/química , NADP/metabolismo , Oxirredução , Oxirredutases/química , Oxirredutases/genética , RNA de Transferência de Leucina/química , RNA de Transferência de Leucina/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Uracila/metabolismo
8.
Biochemistry ; 47(51): 13554-63, 2008 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-19053282

RESUMO

Metal-dependent histone deacetylases (HDACs) require Zn(2+) or Fe(2+) to regulate the acetylation of lysine residues in histones and other proteins in eukaryotic cells. Isozyme HDAC8 is perhaps the archetypical member of the class I HDAC family and serves as a paradigm for studying structure-function relationships. Here, we report the structures of HDAC8 complexes with trichostatin A and 3-(1-methyl-4-phenylacetyl-1H-2-pyrrolyl)-N-hydroxy-2-propenamide (APHA) in a new crystal form. The structure of the APHA complex reveals that the hydroxamate CO group accepts a hydrogen bond from Y306 but does not coordinate to Zn(2+) with favorable geometry, perhaps due to the constraints of its extended pi system. Additionally, since APHA binds to only two of the three protein molecules in the asymmetric unit of this complex, the structure of the third monomer represents the first structure of HDAC8 in the unliganded state. Comparison of unliganded and liganded structures illustrates ligand-induced conformational changes in the L2 loop that likely accompany substrate binding and catalysis. Furthermore, these structures, along with those of the D101N, D101E, D101A, and D101L variants, support the proposal that D101 is critical for the function of the L2 loop. However, amino acid substitutions for D101 can also trigger conformational changes of Y111 and W141 that perturb the substrate binding site. Finally, the structure of H143A HDAC8 complexed with an intact acetylated tetrapeptide substrate molecule confirms the importance of D101 for substrate binding and reveals how Y306 and the active site zinc ion together bind and activate the scissile amide linkage of acetyllysine.


Assuntos
Histona Desacetilases/química , Proteínas Repressoras/química , Sítios de Ligação , Catálise , Domínio Catalítico , Cristalografia por Raios X , Humanos , Ácidos Hidroxâmicos/química , Conformação Molecular , Mutação , Peptídeos/química , Alcamidas Poli-Insaturadas/química , Ligação Proteica , Conformação Proteica , Pirróis/química , Relação Estrutura-Atividade , Especificidade por Substrato
9.
Biochemistry ; 46(19): 5741-53, 2007 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-17444658

RESUMO

Dihydroorotate dehydrogenases (DHODs) catalyze the oxidation of dihydroorotate to orotate in the only redox reaction in pyrimidine biosynthesis. The pyrimidine binding sites are very similar in all structurally characterized DHODs, suggesting that the prospects for identifying a class-specific inhibitor directed against this site are poor. Nonetheless, two compounds that bind specifically to the Class 1A DHOD from Lactococcus lactis, 3,4-dihydroxybenzoate (3,4-diOHB) and 3,5-dihydroxybenzoate (3,5-diOHB), have been identified [Palfey et al. (2001) J. Med. Chem. 44, 2861-2864]. The mechanism of inhibitor binding to the Class 1A DHOD from L. lactis has now been studied in detail and is reported here. Titrations showed that 3,4-diOHB binds more tightly at higher pH, whereas the opposite is true for 3,5-diOHB. Isothermal titration calorimetry and absorbance spectroscopy showed that 3,4-diOHB ionizes to the phenolate upon binding to the enzyme, but 3,5-diOHB does not. The charge-transfer band that forms in the 3,4-diOHB complex allowed the kinetics of binding to be observed in stopped-flow experiments. Binding was slow enough to observe from pH 6 to pH 8 and was (minimally) a two-step process consisting of the rapid formation of a complex that isomerized to the final charge-transfer complex. Orotate and 3,5-diOHB bind too quickly to follow directly, but their dissociation kinetics were studied by competition and described adequately with a single step. Crystal structures of both inhibitor complexes were determined, showing that 3,5-diOHB binds in the same orientation as orotate. In contrast, 3,4-diOHB binds in a twisted orientation, enabling one of its phenolic oxygens to form a very strong hydrogen bond to an asparagine, thus stabilizing the phenolate and causing charge-transfer interactions with the pi-system of the flavin, resulting in a green color.


Assuntos
Hidroxibenzoatos/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Substituição de Aminoácidos , Sítios de Ligação/efeitos dos fármacos , Calorimetria , Di-Hidro-Orotato Desidrogenase , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Cinética , Lactococcus lactis/enzimologia , Modelos Moleculares , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Resorcinóis
10.
Biochemistry ; 45(19): 6170-8, 2006 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-16681389

RESUMO

Histone deacetylases play a key role in regulating transcription and other cellular processes by catalyzing the hydrolysis of epsilon-acetyl-lysine residues. For this reason, inhibitors of histone deacetylases are potential targets for the treatment of cancer. A subset of these enzymes has previously been shown to require divalent metal ions for catalysis. Here we demonstrate that histone deacetylase 8 (HDAC8) is catalytically active with a number of divalent metal ions in a 1:1 stoichiometry with the following order of specific activity: Co(II) > Fe(II) > Zn(II) > Ni(II). The identity of the catalytic metal ion influences both the affinity of the HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) and the Michaelis constant, with Fe(II)- and Co(II)-HDAC8 having K(M) values that are over 5-fold lower than that of Zn(II)-HDAC8. These data suggest that Fe(II), rather than Zn(II), may be the in vivo catalytic metal. In further support of this hypothesis, recombinant HDAC8 purified from E. coli contains 8-fold more iron than zinc before dialysis, and the HDAC8 activity in cell lysates is oxygen-sensitive. Identification of the in vivo metal ion of HDAC8 is essential for understanding the biological function and regulation of HDAC8 and for the development of improved inhibitors of this class of enzymes.


Assuntos
Histona Desacetilases/metabolismo , Ferro/metabolismo , Proteínas Repressoras/metabolismo , Zinco/metabolismo , Sequência de Bases , Sítios de Ligação , Catálise , Primers do DNA , Inibidores de Histona Desacetilases , Humanos , Modelos Moleculares , Plasmídeos , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/antagonistas & inibidores
11.
J Am Chem Soc ; 127(3): 832-3, 2005 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-15656610

RESUMO

The synthesis of thymine for DNA is catalyzed by the enzyme thymidylate synthase (TS). A family of flavin-dependent TSs encoded by the thyX gene has been discovered recently. These newly discovered TSs require a reducing substrate in addition to 2'-deoxyuridine monophosphate (dUMP) and 5,10-methylenetetrahydrofolate (CH2THF), suggesting that the enzyme-bound flavin is a redox intermediary in catalysis. The oxidation of the reduced flavin of the TS from Campylobacter jejuni has been observed directly upon mixing with dUMP and CH2THF under anaerobic conditions, thus providing the first direct demonstration of its redox role in catalysis. Product analysis showed that the one mole of 2'-deoxythymidine monophosphate is formed along with one mole of tetrahydrofolate for each mole of reduced enzyme-bound flavin. The classic TS inactivator 5-fluoro-2'-deoxyuridine monophosphate (FdUMP) was able to bind to the reduced enzyme but was unable to oxidize the flavin, even in the presence of CH2THF. Furthermore, the nucleotide binding site of the enzyme treated with FdUMP and CH2THF was irreversibly blocked, suggesting the formation of a stable substrate adduct analogous to that formed by the well-studied thyA-encoded TS. The formation of inactivated enzyme without flavin oxidation indicates that methylene transfer from the folate to the nucleotide occurs prior to flavin redox chemistry.


Assuntos
Flavina-Adenina Dinucleotídeo/metabolismo , Timidilato Sintase/genética , Timidilato Sintase/metabolismo , Campylobacter jejuni/enzimologia , Campylobacter jejuni/genética , Nucleotídeos de Desoxiuracil/metabolismo , Flavina-Adenina Dinucleotídeo/química , Oxirredução , Espectrofotometria/métodos , Tetra-Hidrofolatos/metabolismo , Timidina Monofosfato/metabolismo , Timidilato Sintase/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...